EPA and Wisconsin Requirements for Racine's Drinking Water

Water delivered by the RWU must be safe from microbes and chemical toxicity, and also from exposure to trace levels of chemicals over a lifetime of 80 years. Source water (Lake Michigan), treated finished water, distribution system water, and residential water throughout the city and surrounding communities are monitored for over 90 regulated contaminants. In 2022, the Racine Water Utility conducted over 53,000 in-house water quality analyses, along with thousands of tests by contracted laboratories. The Water Quality Table, found on the reverse side of this brochure, lists substances tested by RWU during 2022 and preceding years. To ensure that tap water is safe, the EPA prescribes regulations that limit the amount of certain contaminants in the water provided by public water systems. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791.

PFAS in Drinking Water

Per- and Poly-fluoroalkyl Substances (PFAS) are widely used, long lasting chemicals, components of which break down very slowly in the natural environment. Scientific studies have shown that exposure to some PFAS may be linked to harmful health effects in humans. In 2022, the State of Wisconsin revised safe drinking water code to include new standards for two PFAS compounds -PFOA and PFOS-, with a Maximum Contaminant Level (MCL) of 70 parts per trillion (ppt) individually or combined. Racine Water Utility began sampling for this new regulation the 4th Quarter of 2022, with results of 1.73 ppt for PFOA and 1.64 ppt for PFOS. Both of these results are well below the MCL allowed and slightly above the analytical limit of detection. RWU will continue to monitor emerging research on PFAS, along with any federal guidance and regulations of the chemicals.

Lead in Drinking Water

Water that is too corrosive can dissolve lead and other contaminants from your home's plumbing fixtures. For the eighth consecutive year, the RWU lead results were significantly below the EPA established 15 parts per billion (ppb) action level. To see more details regarding lead and copper results, please refer to the 2022 Water Quality Table on the reverse side of this pamphlet. Results can also be found online through the WDNR at https://dnr.wi.gov/dwsviewer/DS/View/138019. RWU is currently transitioning our corrosion control inhibitor treatment technique, directed by the WDNR, with the goal to reduce our consumer's exposure to lead.

Lead in drinking water is rarely the sole cause of lead poisoning, but it can add to the person's total lead exposure. All potential sources of lead in the household should be identified and removed, replaced, or reduced. It is possible that the lead levels in your home may be higher than at other homes in the area due to materials used in the construction of your home's plumbing system. If you are concerned about lead levels in your water (young children are more vulnerable to lead than adults), you may wish to have your water tested. Flushing your tap water for 30 seconds to 2 minutes prior to using the water is an effective method to reduce

exposure to lead. Additional information is available from the Safe Drinking Water Hotline at (800) 426-4791.

Private Lead Service Line Replacement Program: The Utility has been assisting homeowners with lead removal since the fall of 2016, when it first began its Private Lead Service Line Replacement Program. The program is funded by the Department of Natural Resources on an annual basis, and is used to replace lead services in targeted areas or in emergency situations. Because funding is limited, only those homeowners who receive an invitation from the Utility are eligible for the program. Those homeowners who do receive an invitation are strongly encouraged to take advantage of this program and in most cases can have their lead services replaced for free. For further information on your water service material type, size, and age, please access the Utility's public service inventory mapping system at: bit.ly/racinewater

Sources and Contaminants

The Sources of drinking water include: rivers, lakes, streams, ponds, reservoirs, springs, aquifers, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material. It can also pick up substances resulting from the presence of animals or humans. Substances that can be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from wastewater treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, which can occur naturally or result from storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems.

Radioactive contaminants, which occur naturally or result from oil and gas production, and mining activities.

Some people may be more vulnerable to contaminants found in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk for infections. These people should seek advice about drinking water from their healthcare providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791.

Unregulated Contaminant Monitoring Rule

The U.S. EPA uses the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants which currently do not have any health-based standards set under the Safe Drinking Water Act (SDWA). This testing program assists the EPA in determining occurrence of unregulated contaminants and whether future regulation is warranted. The UCMR program began in 2001, with RWU participating in every round due to being a large water system serving >100,000 people. Each round of UCMR monitors as many as 30 contaminants every 5 years. Beginning in 2023, RWU will participate in UCMR5 which will sample for 29 per- and poly- fluoroalkyl substances and lithium in drinking water. For more information visit the EPA website: https://www.epa.gov/dwucmr

UCMR3 Results: Sampled in 2014-2015

Coming ricsuits. Campica in 2014-2015					
Potential Contaminant Sampled For:	Results (ppb) (Range):	Source:			
Vanadium	0.21 (<0.2 – 0.28)	Erosion of natural deposits			
Molybdenum	1.03 (<1 – 1.1)	Erosion of natural deposits			
Cobalt	No Detects	Erosion of natural deposits			
Strontium	136.2 (122.6 – 153.8)	Erosion of natural deposits			
Total Chromium	0.26 (0.22 – 0.29)	Erosion of natural deposits			
Hexavalent Chromium	0.20 (0.16 – 0.26)	Erosion of natural deposits, industrial pollution			
In addition to the testing for the chemicals above; chlorate, 7 volatile organic					

In addition to the testing for the chemicals above: chlorate, 7 volatile organic compounds, 1 synthetic compound, 7 hormones, and 6 per-fluorinated compounds were also tested for. None of these possible contaminants were detected. Chlorate can be formed in the disinfection process, while the other groups can be found resulting from pollution.

UCMR4 Results: Sampled in 2018-2019

Potential Contaminant	Results (ppb)	Source:			
Sampled For:	(Range):				
Disinfection By-Products	25.2	By-product of			
(9 halo-acetic acids)	(18.5-33.5)	disinfection process			
Bromide	40	Erosion of natural			
	(34-54)	deposits			
Total Organic Carbon	1908	Erosion of natural			
	(1800-2080)	deposits, vegetation decay, pollution			
Manganese	2.38	Erosion of natural			
	(<0.4 - 2.38)	deposits, drinking			
		water additive, in-			
		dustrial by-product			
In addition to the testing for the chemicals above: 8 cyanotoxins, 3 alco-					

In addition to the testing for the chemicals above: 8 cyanotoxins, 3 alcohols, 3 semi-volatile chemicals, 8 pesticides, and 2 metals (germanium and manganese) were also tested for. Except for manganese, none of these possible contaminants were detected. Cyanotoxins can be produced by algae, germanium and manganese from the erosion of natural deposits, with the others originating from pollution.

For a complete list of these chemicals contact the Racine Water Utility at (262) 636-9534.

Information Sources

In addition to the numbers listed in other sections of this report, there are many governmental and water industry websites available on the internet providing information on water quality, regulations, water treatment and public health. Provided below are a number of these sites and website addresses:

Organization

Web Address

United States Environmental Protection Agency

Wisconsin Department of Natural Resources

Wisconsin Public Service Commission American Water Works Association

Rural Water Association
National Sanitation Foundation

Wisconsin Water Association

www.epa.gov

www.dnr.wi.gov

www.psc.wi.gov

www.awwa.org www.wiawwa.org

www.nrwa.org www.nsf.org

Racine Water Utility Contact Numbers:

Water Quality Concerns: (262) 636-9441 or (262) 636-9534

Billing Questions: (262) 636-9181 **Reporting Possible Water Main or**

Service Breaks: (262) 636-9185 Scheduling Service Appointments: (262) 636-9185 or (262) 636-9186

Visit us online at www.cityofracine.org/Water.aspx

Para ayuda en español llame: (262) 636-9181 de 8:00am-4:55pm

For an electronic version of this report go to: http://www.cityofracine.org/water/2022CCR

Racine Water Utility
100 Hubbard Street • Racine, WI 53402

Welcome to Racine's Drinking Water Consumer Confidence Report

This brochure is a snapshot of your residence's water quality provided last year. Included are the details about where your water comes from, what it contains, and how it compares to the Environmental Protection Agency (EPA) and State of Wisconsin standards. The Racine Water Utility's (RWU) water quality meets or exceeds all Federal and State drinking water quality standards. The Racine Water Utility operates a surface water membrane ultrafiltration treatment plant and employs 33 state certified waterworks operators. The Utility pays close attention to emerging research and our concerns about drinking water are always focused on the health and safety of you and your family.

Water Source Supply

Water delivered to Racine customers is treated and purified water drawn from Lake Michigan. The lake provides abundant, high quality water for many major cities along its shores. The Wisconsin Department of Natural Resources (WDNR) completed source water assessments across the state of Wisconsin in the early 2000s. The RWU source water assessment was completed in April 2003, which determined the relative susceptibility of Lake Michigan to contamination in the Racine area. Although the water treatment plant protects its customers from potentially adverse health effects due to contamination, the source water assessment provides a first step guide for the community to implement preventative practices and limit contamination.

For more information go to: www.epa.gov/sourcewaterprotection

Public Invited

Racine Waterworks Commission Meetings are typically held the third Tuesday of the month, beginning at 4:00 PM. Meetings are held in-person at City Hall in Conference Room 207 A/B (unless notified otherwise). Please visit the City for Racine's Legislative Calendar for up to date information on the meetings, including agendas and minutes. (cityofracine.legistar.com/Calendar.aspx)

Meeting dates in 2023 are:

January 17th
February 21st
March 21st
April 18th
May 16th
June - No Meeting

July 18th August 15th September 19th October 17th November 21st December - No Meeting

Racine Water Utility
2022 Drinking Water
Quality Report

Racine Waterworks 2022 Water Quality Table

MCL

Highest Monthly

Violation

Major Source

MICROBIOLOGICAL RESULTS (SAMPLED IN 2022)

Contaminant

Your water is tested for many contaminants every year. The following table lists all the detected and non-detected contaminants tested for in 2022. RWU is allowed to monitor for some contaminants less frequently than once per year. Those results are also found in the table below and must be reported for the previous 5 years if not tested in the preceding year.

Total Coliform Bacteria	MCLG 0	< 5%/month	0.00%	violation No	Human and animal fecal waste						
Viruses and Legionella	0	TT			Found naturally in water, human and animal fecal waste, multiplies in heating systems						
PRIMARY REGULATED INORGANIC RI	e sults (Samp	LED IN 2022)									
Contaminant	MCLG	MCL	Results (Range)	Violation	Major Source						
Asbestos (million fibers per liter) Antimony (ppb)	6	7 6	<0.20 <0.32	No No	Decay of asbestos cement in water mains; erosion of natural deposits Discharge from petroleum refineries, fire retardants, ceramics, electronics, solder						
Artenic (ppb) Arsenic (ppb)	10	10	<0.85	No	Erosion of natural deposits						
Barium (ppb)	2000	2000	22	No	Erosion of natural deposits						
Beryllium (ppb) Cadmium (ppb)		4 5	< 0.06 < 0.12	No No	By-product of industrial processes By-product of industrial processes, erosion of natural deposits						
Chromium (ppb)		100	<1.1	No	Erosion of natural deposits						
Cyanide (ppb) (Sampled in 2020)		200	<7	No	By-product of industrial, mining, and metal finishing processes						
Mercury (ppb)		2 100	< 0.047 <1.0	No No	Erosion of natural deposits Erosion of natural deposits						
Nickel (ppb) Nitrite (ppm)	1	100	< 0.040	No	Runoff from fertilizer use, leaching from septic tanks, sewage						
Selenium (ppb)		50	< 1.0	No	Erosion of natural deposits						
Thallium (ppb)		2	< 0.54	No	Erosion of natural deposits						
Fluoride (ppm)		4	Average: 0.67 Range 0.64 - 0.78	No	Water additive which promotes strong teeth, erosion of natural deposits, discharge from fertilizer and aluminum factories						
Nitrata (nom)	10	10	0.55	No	· · · · · · · · · · · · · · · · · · ·						
Nitrate (ppm)	10	10	0.55	NU	Runoff from fertilizer use, leaching from septic tanks, sewage Erosion of natural deposits						
рН		6.5 - 8.5	Average: 7.70	No	Erosion of natural deposits						
			Range 7.46 - 7.98								
Chlorine Residual (ppm)	4.0	4.0	Average: 1.27	No	Water additive for disinfection						
			Range 1.01 - 1.60								
DISINFECTION BY-PRODUCTS - DIST	RIBUTION (SAN	MPLED 4 SITES	S IN 2022)								
Contaminant	MCLG	MCL	Results	Violation	Major Source						
TTHM (ppb) (Total trihalomethanes)	0	80	33.8 (15 - 57)	No	By-product of drinking water chlorination						
HAA (ppb) (Haloacetic acids)	0	60	15.5 (9.4 - 26)	No	By-product of drinking water chlorination						
ORGANIC COMPOUND RESULTS (SAM	<u> </u>										
Volatile Organic Compounds (ppb)		unds were tested w		No	By-product of industrial processes, petroleum production, gas stations,						
		of any of these chen			urban storm run-off and residential uses						
Synthetic Organic Compounds (ppb)	MCLG	MCL	Results	NI.							
Atrazine (ppb)	3	3	0.045, 0.035	No	Storm run-off from agriculture pesticide application						
Dual (ppb)	NA	NA	0.012, 0.011	No							
	42 other compour		no detection of any of	No	By-product of industrial processes, petroleum production, gas stations,						
DEAC (completely 2022)	MCL individually or			these chemicals urban storm fun-on and residential uses							
PFAS (sampled in 2022)	-	Combined	Results	No							
Perfluorooctanic Acid-PFOA (ppt)	70	Combined	1.73	No No	By-product of industrial process, food packaging, commercial household products						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt)	70 70		1.73 1.64	No							
Perfluorooctanic Acid-PFOA (ppt)	70 70 ED IN 2022) Res		1.73 1.64	No dential Water Taps							
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt)	70 70 ED IN 2022) Res No. of sites		1.73 1.64	No dential Water Taps 90% Level/							
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant	70 70 ED IN 2022) Res No. of sites Exceeding A.L.	sults of Lead and C	1.73 1.64 opper Sampling at Resid Action Level	No dential Water Taps 90% Level/ Violation	Major Source						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm)	70 70 ED IN 2022) Res No. of sites Exceeding A.L. 0 out of 53	sults of Lead and C MCLG 1.3	1.73 1.64 opper Sampling at Resid Action Level A.L.=1.3	No dential Water Taps 90% Level/ Violation 0.20 / No	Major Source Corrosion of household plumbing systems, erosion of natural deposits						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb)	70 70 ED IN 2022) Res No. of sites Exceeding A.L. 0 out of 53 0 out of 53	sults of Lead and C MCLG 1.3 0	1.73 1.64 opper Sampling at Resid Action Level	No dential Water Taps 90% Level/ Violation	Major Source						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESU	70 70 70 ED IN 2022) Res No. of sites Exceeding A.L. 0 out of 53 0 out of 53	sults of Lead and C MCLG 1.3 0 IN 2022)	1.73 1.64 opper Sampling at Resid Action Level A.L.=1.3 A.L.=15	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb)	70 70 ED IN 2022) Res No. of sites Exceeding A.L. 0 out of 53 0 out of 53	sults of Lead and C MCLG 1.3 0	1.73 1.64 opper Sampling at Resid Action Level A.L.=1.3 A.L.=15 Results	No dential Water Taps 90% Level/ Violation 0.20 / No	Major Source Corrosion of household plumbing systems, erosion of natural deposits						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESU	70 70 70 ED IN 2022) Res No. of sites Exceeding A.L. 0 out of 53 0 out of 53	sults of Lead and C MCLG 1.3 0 IN 2022)	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULTS Contaminant	70 70 70 ED IN 2022) Res No. of sites Exceeding A.L. 0 out of 53 0 out of 53 LTS (SAMPLED MCLG	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and	1.73 1.64 opper Sampling at Resident Action Level A.L.=1.3 A.L.=15 Results Sand Filtration	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESU	70 70 70 ED IN 2022) Res No. of sites Exceeding A.L. 0 out of 53 0 out of 53	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never > 1 Membrane Filtration	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULTS Contaminant	70 70 70 ED IN 2022) Res No. of sites Exceeding A.L. 0 out of 53 0 out of 53 LTS (SAMPLED MCLG	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never > 1	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU)	70 70 70 ED IN 2022) Res No. of sites Exceeding A.L. 0 out of 53 0 out of 53 LTS (SAMPLED MCLG	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals.	70 70 70 70 70 70 70 70 70 70 70 70 70 7	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of staurement of water of	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Partilarity. Water systems mu	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No culate matter in the list meet clarity star	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr	70 70 70 70 70 70 70 70 70 70 70 70 70 7	sults of Lead and C MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of sourcement of water color maximum turbidi	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particles residence in the particle of	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No culate matter in the st meet clarity stare atment plant for started to started the started to started the started to started the started to started the started t	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water the water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr turbidity was below 0.3 NTU 100% of the time. In 2	70 70 70 70 70 70 70 70 70 70 70 70 70 7	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of sourcement of water co's maximum turbidily peak turbidity water	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particles in the second of	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No culate matter in the st meet clarity stare the start of a ving the treatment plant for aving the treatment.	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water the water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the nt plant.						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr	70 70 70 70 70 70 70 70 70 70 70 70 70 7	sults of Lead and C MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of sourcement of water color maximum turbidi	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particles residence in the particle of	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No culate matter in the st meet clarity stare atment plant for started to started the started to started the started to started the started to started the started t	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water the water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr turbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 -2017)	No. of sites Exceeding A.L. 0 out of 53 0 out of 53 LTS (SAMPLED MCLG na t purification process Turbidity is the meas ane filters. The RWU 1022, the daily average	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of sturement of water consumer to the standard of th	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particle of the particl	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No No culate matter in the list meet clarity stareatment plant for a ving the treatmer No	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water e water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the nt plant. Human and animal feces						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr turbidity was below 0.3 NTU 100% of the time. In 2	70 70 70 70 70 70 70 70 70 70 70 70 70 7	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of solutrement of water color maximum turbidity was real maximum turbidity expected by the solutrement of the peak turbidity was real maximum.	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particles in the second of	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No culate matter in the st meet clarity stare the start of a ving the treatment plant for aving the treatment.	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water the water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the nt plant.						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr turbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 -2017)	70 70 70 70 70 70 70 70 Record To	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of sturement of water c 's maximum turbidi pe peak turbidity wa Treatment Technique Treatment Technique	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particlerity. Water systems multiple for water leaving the times of the control of the contr	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No Culate matter in the list meet clarity stare atment plant for a ving the treatmer No No No No No No No No No N	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water e water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the nt plant. Human and animal feces						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr turbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 -2017) Giardia (Sampled 2015 – 2017) If turbidity maximum contaminant levels are met, the	70 70 70 70 70 70 70 70 70 70 70 70 70 7	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of sturement of water c 's maximum turbidi pe peak turbidity wa Treatment Technique Treatment Technique	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particlerity. Water systems multiple for water leaving the times of the control of the contr	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No Culate matter in the list meet clarity stare atment plant for a ving the treatmer No No No No No No No No No N	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water e water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the nt plant. Human and animal feces						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membraturbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 -2017) Giardia (Sampled 2015 – 2017) If turbidity maximum contaminant levels are met, the RADIOLOGICAL RESULTS (SAMPLED III)	70 70 70 70 70 70 70 70 70 Record To	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of surrement of water or so maximum turbidity water the peak	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particlarity. Water systems multy for water leaving the tiss 0.019 NTU for water leaving for cryptosporidium	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No Culate matter in the list meet clarity state the reatment plant for a ving the treatment No	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water e water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the nt plant. Human and animal feces Human and animal feces						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membraturbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 -2017) Giardia (Sampled 2015 - 2017) If turbidity maximum contaminant levels are met, the RADIOLOGICAL RESULTS (SAMPLED I Contaminant)	70 70 70 70 70 70 70 70 70 70 70 70 70 7	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of sturement of water c 's maximum turbidi pe peak turbidity wa Treatment Technique Treatment Technique	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particlerity. Water systems multiple for water leaving the times of the control of the contr	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No Culate matter in the list meet clarity stare atment plant for a ving the treatmer No No No No No No No No No N	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water e water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the nt plant. Human and animal feces Human and animal feces Major Source						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membraturbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 -2017) Giardia (Sampled 2015 - 2017) If turbidity maximum contaminant levels are met, the RADIOLOGICAL RESULTS (SAMPLED I Contaminant Alpha Emitters (pCi/l) Combined Radium (pCi/l)	No. of sites Exceeding A.L. 0 out of 53 0 out of 53 LTS (SAMPLED MCLG na t purification process Turbidity is the meas ane filters. The RWU 2022, the daily average 0 0 e system is deemed N 2020) MCLG 0 0 0	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of startement of water cris maximum turbidity water cris maximum turbidity water the compliance in tree. MCL 15 5	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particlarity. Water systems mutately for water leaving the times of the systems of the syste	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No Culate matter in the list meet clarity state atment plant for a ving the treatmer No No No No No No No No No N	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water ere water may be disease causing micro-organisms or can provide hiding places for endards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the ent plant. Human and animal feces Major Source Erosion of natural deposits Erosion of natural deposits Erosion of natural deposits						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr turbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 -2017) Giardia (Sampled 2015 – 2017) If turbidity maximum contaminant levels are met, the RADIOLOGICAL RESULTS (SAMPLED I Contaminant Alpha Emitters (pCi/l) Combined Radium (pCi/l) Uranium (ppb)	70 70 70 70 70 70 70 70 70 70 70 70 70 7	MCL Treatment Technique	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particlerity. Water systems multiplication water leaving the title of cysts/liter 0 cysts/liter 0 cysts/liter atting for cryptosporidium Results 0.729 0.837 0.347	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No Culate matter in the list meet clarity state atment plant for a ving the treatmer No No No No No No No No No N	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water e water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the nt plant. Human and animal feces Human and animal feces Major Source Erosion of natural deposits						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr turbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 -2017) Giardia (Sampled 2015 – 2017) If turbidity maximum contaminant levels are met, the RADIOLOGICAL RESULTS (SAMPLED I Contaminant Alpha Emitters (pCi/I) Combined Radium (pCi/I) Uranium (ppb) SECONDARY OR UNREGULATED CONTAMENTAL Alpha Emitters (pCi/I) Combined Radium (pCi/I) Uranium (ppb)	TAMINANT RES	MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of staurement of water of smaximum turbidity was Treatment Technique Treatment Technique in compliance in tree MCL 15 5 30 SULTS (SAMP)	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particlerity. Water systems musty for water leaving the times of the control	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No Iculate matter in the last meet clarity stare the clarity stare at the treatment plant for a ving the treatment No	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water e water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the tt plant. Human and animal feces Human and animal feces Major Source Erosion of natural deposits						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membraturbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 -2017) Giardia (Sampled 2015 – 2017) If turbidity maximum contaminant levels are met, the RADIOLOGICAL RESULTS (SAMPLED I Contaminant Alpha Emitters (pCi/l) Combined Radium (pCi/l) Uranium (ppb) SECONDARY OR UNREGULATED CONCONTAMINANT	TAMINANT RES	MCL Treatment Technique	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=1.5 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particlerity. Water systems muty for water leaving the trust of the control	No Jential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No culate matter in the last meet clarity stare atment plant for aving the treatmer No No No No No No No No No N	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water e water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the nt plant. Human and animal feces Human and animal feces Major Source Erosion of natural deposits						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr turbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 -2017) Giardia (Sampled 2015 – 2017) If turbidity maximum contaminant levels are met, the RADIOLOGICAL RESULTS (SAMPLED I Contaminant Alpha Emitters (pCi/l) Combined Radium (pCi/l) Uranium (ppb) SECONDARY OR UNREGULATED CONTAMINANT Alkalinity (ppm)	TAMINANT RES	MCL Treatment Technique	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=15 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particlerity. Water systems musty for water leaving the trusty of the solution of the s	No dential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No culate matter in the last meet clarity stareatment plant for aving the treatmer No	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water e water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the nt plant. Human and animal feces Human and animal feces Major Source Erosion of natural deposits Erosion of natural deposits Major Source Erosion of natural deposits						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr turbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 - 2017) Giardia (Sampled 2015 – 2017) If turbidity maximum contaminant levels are met, the RADIOLOGICAL RESULTS (SAMPLED I Contaminant Alpha Emitters (pCi/I) Combined Radium (pCi/I) Uranium (ppb) SECONDARY OR UNREGULATED CONTAMINANT CONTAMINANT Alkalinity (ppm) Sodium (ppm) Silica/Silicate (ppm) (Sampled in 2019)	TAMINANT RES	MCL Treatment Technique	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=1.5 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particlerity. Water systems multiplication water leaving the triple of the control of the	No dential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No culate matter in the st meet clarity stareatment plant for aving the treatmer No No No Violation No No No Violation No	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water e water may be disease causing micro-organisms or can provide hiding places for natural sas listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the natural and animal feces Human and animal feces Major Source Erosion of natural deposits						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr turbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 -2017) Giardia (Sampled 2015 – 2017) If turbidity maximum contaminant levels are met, the RADIOLOGICAL RESULTS (SAMPLED In Contaminant Alpha Emitters (pCi/l) Combined Radium (pCi/l) Uranium (ppb) SECONDARY OR UNREGULATED CONTAMINANT Alkalinity (ppm) Sodium (ppm) Silica/Silicate (ppm) (Sampled in 2019) Ortho-phosphate (ppm)	TAMINANT RES	In South of Lead and Community of the Co	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=1.5 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particlerity. Water systems muty for water leaving the triple of the control of the contro	No dential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No culate matter in the st meet clarity stareatment plant for aving the treatmer No No No Violation No No No Violation No	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water e water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the tiplant. Human and animal feces Human and animal feces Major Source Erosion of natural deposits Erosion of natural deposits, addition of chemical in water treatment						
Perfluorooctanic Acid-PFOA (ppt) Perfluorooctane Sulfonic Acid-PFOS (ppt) LEAD AND COPPER RESULTS (SAMPL Contaminant Copper (ppm) Lead (ppb) TURBIDITY AND PARTICULATE RESULT Contaminant Turbidity (NTU) Next to disinfection of the water, the most important micro-organisms to escape disinfection chemicals. sand filters, and re-filters the water through membr turbidity was below 0.3 NTU 100% of the time. In 2 Cryptosporidium (Sampled 2015 - 2017) Giardia (Sampled 2015 – 2017) If turbidity maximum contaminant levels are met, the RADIOLOGICAL RESULTS (SAMPLED I Contaminant Alpha Emitters (pCi/I) Combined Radium (pCi/I) Uranium (ppb) SECONDARY OR UNREGULATED CONTAMINANT CONTAMINANT Alkalinity (ppm) Sodium (ppm) Silica/Silicate (ppm) (Sampled in 2019)	TAMINANT RES	sults of Lead and C MCLG 1.3 0 IN 2022) MCL TT Never > 1 NTU, and 95% of time < 0.3 NTU is the removal of staurement of water c is maximum turbidity was Treatment Technique Treatment Technique in compliance in tree MCL 15 5 30 SULTS (SAMP) MCL na na na	1.73 1.64 opper Sampling at Residence Action Level A.L.=1.3 A.L.=1.5 Results Sand Filtration Max = 0.50 NTU TT Never >1 Membrane Filtration Max = 0.041 NTU 100% time <0.3 NTU uspended particles. Particlerity. Water systems muty for water leaving the triangle of the system of	No dential Water Taps 90% Level/ Violation 0.20 / No 5.7 / No Violation No No culate matter in the st meet clarity stareatment plant for aving the treatmer No No No Violation No No No Violation No	Major Source Corrosion of household plumbing systems, erosion of natural deposits Corrosion of household plumbing systems, erosion of natural deposits Major Source Soil runoff, suspended matter in source water e water may be disease causing micro-organisms or can provide hiding places for ndards as listed in the above table. The RWU filters the treated water first through 2022 was 0.041 NTU, well below the established maximum allowed levels, and the ti plant. Human and animal feces Human and animal feces Major Source Erosion of natural deposits Erosion of natural deposits, addition of chemical in water treatment Decay of natural and man-made deposits						

WATER QUALITY CORROSION PROGRAM MONITORING RESULTS - DISTRIBUTION (SAMPLED 26 SITES IN 2022) Contaminant MCLG MCL Results (Range) Violation Major Source

Outummunt	MOLG	IIIOL	riodalio (rialigo)	WIOIGIOII	major course	
Calcium (ppm)	na	na	35 (34-37)	No	Erosion of natural deposits	
Hardness (ppm)	na	na	140	No	Erosion of natural deposits	
Chloride (ppm)		250	17 (17-18)	No	Erosion of natural deposits	
Manganese (ppm)		0.05	< 0.0020	No	Erosion of natural deposits, addition of chemical in water treatment	
Iron (ppm)	na	0.30	< 0.063	No	Erosion of natural deposits	
Aluminum (ppm)		0.05 - 0.20	< 0.024	No	Erosion of natural deposits, addition of chemical in water treatment	
Sulfate (ppm)	na	250	21	No	Erosion of natural deposits	
Conductivity (umho/cm)	na	na	315 (304-328)	No	Erosion of natural deposits	

For a more comprehensive water quality parameter list, please contact the Racine Water Utility or visit us online at www.cityofracine.org/Water.aspx

How to Read the Water Quality Table: Use the definitions here to understand what the scientific data means for your drinking water: The Compliance Level may be the substance's highest level detected in the water or an average concentration of all samples tested, depending on the regulation for the substance. If multiple samples were tested in 2022, the lowest and highest detected values are listed under Range of Detections. Regulated substances have Maximum Contaminant Levels (MCLs) set by the EPA. This is the highest level of the substance legally allowed in drinking water. Some contaminants also have a Maximum Contaminant Level Goals (MCLGs). This is the level of a substance where there is no known or expected health risk. MCLGs allow for a margin of safety. MCLs are set as close to MCLGs as practical using the best available

water treatment processes. Monitoring for unregulated contaminants is also conducted. Although these are substances that do not have MCLs, the EPA evaluates them when assessing future drinking water regulations. The MCL for lead and copper is known as the **Action Level (AL)**. This is the concentration of a contaminant which a water system must follow. For compliance, 90% of all samples tested must be below the Action Level. Turbidity is a measurement of water clarity, used to evaluate the effectiveness of the filtration system. One criterion for enforcement of the turbidity regulation is **Treatment Technique** (TT). This is a water treatment process that is required by the EPA to reduce the level of turbidity in the water. The **Unit of Measurement** reported for

each substance depends on the nature of analytical measurement and the amount of the substance detected. Listed below are the abbreviations for these units. $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$

ppm: parts per million or milligrams per liter
 ppb: parts per billion or micrograms per liter
 ppt: parts per trillion or nanograms per liter
 pCi/I: picocuries per liter, a measure of radioactivity
 NTU: nephelometric turbidity units
 umho/cm: micromhos per centimeter